The fate of carboxymethyl cellulose as a polymer of pharmaceutical importance

Arghya Paria
Vineet Kumar Rai

Abstract

Carboxymethyl cellulose (CMC) is one of the most widely used cellulose derivatives. This polymer is commonly used in several sectors, such as food, paper mills, textile, and pharmaceutical industries. CMC also has versatile applications in biomedical engineering, treatment of wastewater, energy production units, and many more. The main reason for selecting this polymer is its characteristic surface properties, mechanical/tensile strength, hydrophilicity, viscous properties, and majorly abundance source of raw materials. CMC production is a low-cost process that can be carried out quickly on a lab scale. Several research publications have been published on CMC, depending on the origins and application domains. This review provides general information on this material's properties, which justifies its applications in several medical and non-medical sectors.


CITATION
DOI: 10.55006/biolsciences.2022.2204
Published: 14-06-2022

How to Cite
Paria, A., & Rai, V. K. (2022). The fate of carboxymethyl cellulose as a polymer of pharmaceutical importance. Biological Sciences, 2(2), 204–215. https://doi.org/10.55006/biolsciences.2022.2204

References

Heinze T, Pfeiffer K. Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie. 1999 May 1;266(1):37-45.

Revol JF, Goring DA. On the mechanism of the mercerization of cellulose in wood. Journal of Applied Polymer Science. 1981 Apr;26(4):1275-82.

Pushpamalar V, Langford SJ, Ahmad M, Lim YY. Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydrate Polymers. 2006 May 11;64(2):312-8.

Singh RK, Singh AK. Optimization of reaction conditions for preparing carboxymethyl cellulose from corn cobic agricultural waste. Waste and Biomass Valorization. 2013 Mar;4(1):129-37.

Mondal MI, Yeasmin MS, Rahman MS. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules. 2015 Aug 1;79:144-50.

Rachtanapun P, Luangkamin S, Tanprasert K, Suriyatem R. Carboxymethyl cellulose film from durian rind. LWT-Food Science and Technology. 2012 Sep 1;48(1):52-8.

Adinugraha MP, Marseno DW. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers. 2005 Nov 10;62(2):164-9.

Dapía S, Tovar CA, Santos V, Parajó JC. Rheological behaviour of carboxymethylcellulose manufactured from TCF-bleached milox pulps. Food hydrocolloids. 2005 Mar 1;19(2):313-20.

Revol JF, Goring DA. On the mechanism of the mercerization of cellulose in wood. Journal of Applied Polymer Science. 1981 Apr;26(4):1275-82.

Verma N, Pramanik K, Singh AK, Biswas A. Design of magnesium oxide nanoparticle incorporated carboxy methyl cellulose/poly vinyl alcohol composite film with novel composition for skin tissue engineering. Materials Technology. 2021 Jan 18:1-1.

Sharmila G, Muthukumaran C, Kirthika S, Keerthana S, Kumar NM, Jeyanthi J. Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. International Journal of Biological Macromolecules. 2020 Aug 1; 156:430-7.

Parikh DV, Fink T, Rajasekharan K, Sachinvala ND, Sawhney AP, Calamari TA, Parikh AD. Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Textile Research Journal. 2005 Feb;75(2):134-8.

Easson M, Villalpando A, Condon BD. Absorbent Properties of Carboxymethylated Fiber, Hydroentangled Nonwoven and Regenerated Cellulose: A Comparative Study. Journal of Engineered Fibers and Fabrics. 2017 Dec;12(4):155892501701200408.

Singh BN, Panda NN, Mund R, Pramanik K. Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydrate polymers. 2016 Oct 20; 151:335-47.

Saladino ML, Markowska M, Carmone C, Cancemi P, Alduina R, Presentato A, Scaffaro R, Biały D, Hasiak M, Hreniak D, Wawrzyńska M. Graphene oxide carboxymethylcellulose nanocomposite for dressing materials. Materials. 2020 Jan;13(8):1980.

Mondal MI, Yeasmin MS, Rahman MS. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules. 2015 Aug 1; 79:144-50.

Li W, Sun B, Wu P. Study on hydrogen bonds of carboxymethyl cellulose sodium film with two-dimensional correlation infrared spectroscopy. Carbohydrate polymers. 2009 Oct 15;78(3):454-61.

Adinugraha MP, Marseno DW. Synthesis and characterization of sodium carboxymethylcellulose from cavendish banana pseudo stem (Musa cavendishii LAMBERT). Carbohydrate Polymers. 2005 Nov 10;62(2):164-9.

Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ. Pharmaceutical applications of cellulose ethers and cellulose ether esters. Biomacromolecules. 2018 Jun 5;19(7):2351-76.

Jiménez-Castellanos MR, Zia H, Rhodes CT. Design and testing in vitro of a bioadhesive and floating drug delivery system for oral application. International Journal of Pharmaceutics. 1994 Apr 25;105(1):65-70.

Varshosaz J, Tavakoli N, Roozbahani F. Formulation and in vitro characterization of ciprofloxacin floating and bioadhesive extended-release tablets. Drug delivery. 2006 Jan 1;13(4):277-85.

Dortunç B, Özer L, Uyanik N. Development and in vitro evaluation of a buccoadhesive pindolol tablet formulation. Drug development and industrial pharmacy. 1998 Jan 1;24(3):281-8.

Semalty M, Semalty A, Kumar G. Formulation and characterization of mucoadhesive buccal films of glipizide. Indian journal of pharmaceutical sciences. 2008 Jan;70(1):43.

Mohammed FA, Khedr H. Preparation and in vitro/in vivo evaluation of the buccal bioadhesive properties of slow-release tablets containing miconazole nitrate. Drug development and industrial pharmacy. 2003 Jan 1;29(3):321-37.

Parviez N, Ahuja A, Khar RK. Development and evaluation of muco-adhesive buccal tablets of lignocaine hydrochloride. Indian journal of pharmaceutical sciences. 2002;64(6):563.

Ali J, Khar RK, Ahuja A. Formulation and characterisation of a buccoadhesive erodible tablet for the treatment of oral lesions. Die Pharmazie. 1998 May 1;53(5):329-34.

Verma N, Wahi AK, Verma A, Chattopadhayay P. Evaluation of a mucoadhesive buccal patch for delivery of atenolol: in vitro screening of bioadhesion. J Pure Appl Microbiol. 2007 Apr;1(115):8.

Baun A, Hartmann NB, Grieger K, Kusk KO. Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology. 2008 Jul;17(5):387-95.

Javanbakht S, Nazari N, Rakhshaei R, Namazi H. Cu-crosslinked carboxymethylcellulose /naproxen/graphene quantum dot nanocomposite hydrogel beads for naproxen oral delivery. Carbohydrate polymers. 2018 Sep 1; 195:453-9.

Oppermann W. Superabsorbent materials based on cellulose. Papier. 1995 Dec 1;49(12):765-769.

Demitri C, Del Sole R, Scalera F, Sannino A, Vasapollo G, Maffezzoli A, Ambrosio L, Nicolais L. Novel superabsorbent cellulose‐based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science. 2008 Nov 15;110(4):2453-60.

Liu P, Peng J, Li J, Wu J. Radiation crosslinking of CMC-Na at low dose and its application as substitute for hydrogel. Radiation Physics and Chemistry. 2005 Apr 1;72(5):635-8.

Barbucci R, Magnani A, Consumi M. Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules. 2000 Oct 3;33(20):7475-80.

El Salmawi KM. Application of polyvinyl alcohol (PVA)/carboxymethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and thawing. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry. 2007 Apr 1;44(6):619-24.

Rokhade AP, Agnihotri SA, Patil SA, Mallikarjuna NN, Kulkarni PV, Aminabhavi TM. Semi-interpenetrating polymer network microspheres of gelatin and sodium carboxymethyl cellulose for controlled release of ketorolac tromethamine. Carbohydrate polymers. 2006 Aug 15;65(3):243-52.

Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery. Advanced drug delivery reviews. 2001 Dec 31;53(3):321-39.

Ullah F, Othman MB, Javed F, Ahmad Z, Akil HM. Classification, processing and application of hydrogels: A review. Materials Science and Engineering: C. 2015 Dec 1; 57:414-33.

Das N. Preparation methods and properties of hydrogel: A review. Int. J. Pharm. Pharm. Sci. 2013 Jan;5(3):112-7.

Javanbakht S, Pooresmaeil M, Hashemi H, Namazi H. Carboxymethylcellulose capsulated Cu-based metal-organic framework-drug nanohybrid as a pH-sensitive nanocomposite for ibuprofen oral delivery. International journal of biological macromolecules. 2018 Nov 1; 119:588-96.

Mondal MI, Yeasmin MS, Rahman MS. Preparation of food grade carboxymethyl cellulose from corn husk agrowaste. International Journal of Biological Macromolecules. 2015 Aug 1;79:144-50.

Huan Y, Zhang S, Vardhanabhuti B. Effect of CMC molecular weight on acid‐induced gelation of heated WPI‐CMC soluble complex. Journal of food science. 2016 Feb;81(2):N502-7.

Theeuwen C, Dijk B, inventors; Akzo Nobel NV, assignee. Use of carboxymethyl cellulose (cmc) in fruit-based products. United States patent application US 10/537,199. 2006 Feb 9.

Abu-Jdayil B, Ghannam M. The modification of rheological properties of sodium bentonite-water dispersions with low viscosity CMC polymer effect. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2014 May 19;36(10):1037-48.

Sundaram H, Voigts B, Beer K, Meland M. Comparison of the rheological properties of viscosity and elasticity in two categories of soft tissue fillers: calcium hydroxylapatite and hyaluronic acid. Dermatologic Surgery. 2010 Nov; 36:1859-65.

Hamdan MA, Ramli NA, Othman NA, Amin KN, Adam F. Characterization and property investigation of microcrystalline cellulose (MCC) and carboxymethyl cellulose (CMC) filler on the carrageenan-based biocomposite film. Materials Today: Proceedings. 2021 Jan 1; 42:56-62.

Karakus S, Ilgar M, Tan E, Kahyaoglu IM, Tasaltin N, Albayrak I, Insel MA, Kilislioglu A. Preparation and characterization of carboxymethyl cellulose/poly (ethylene glycol)-rosin pentaerythritolester polymeric nanoparticles: Role of intrinsic viscosity and surface morphology. Surfaces and Interfaces. 2020 Dec 1; 21:100642.

Arancibia C, Navarro-Lisboa R, Zúñiga RN, Matiacevich S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science. 2016 Jan 1;2016.

Birsan M, Bibire N, Panainte AD, Silasi O, Antonoaea P, Ciurba A, Cristofor AC, Wroblewska M, Sosnowska K. The Influence of the Preparation Method on the Characteristics of a New Cosmetic Gel Based on Hyaluronic Acid and Matrix-Forming Polymers. network. 2020 Jun 1;7:9.Roy N, Saha N, Kitano T, Saha P. Biodegradation of PVP–CMC hydrogel film: A useful food packaging material. Carbohydrate polymers. 2012 Jun 20;89(2):346-53.

Aboagye IA. Use of Exogenous Fibrolytic Enzymes to Improve the Nutritive Value of Preserved Forage for Ruminants (Doctoral dissertation, Thompson Rivers University).

Feddersen RL, Thorp SN. Sodium carboxymethylcellulose. InIndustrial gums 1993 Jan 1 (pp. 537-578). Academic Press.

Wanchoo RK, Sharma PK. Viscometric study on the compatibility of some water-soluble polymer–polymer mixtures. European Polymer Journal. 2003 Jul 1;39(7):1481-90.

Whistler R, editor. Industrial gums: polysaccharides and their derivatives. Elsevier; 2012 Dec 2.

Casaburi, A.; Rojo, Ú.M.; Cerrutti, P.; Vázquez, A.; Foresti, M.L. Carboxymethyl cellulose with tailored degree of substitution obtained from bacterial cellulose. Food Hydrocoll. 2018, 75, 147–156

Yeasmin MS, Mondal MI. Synthesis of highly substituted carboxymethyl cellulose depending on cellulose particle size. International journal of biological macromolecules. 2015 Sep 1;80:725-31.

Hon, D.N.-S. Cellulose: Chemistry and Technology. In Encyclopedia of Materials: Science and Technology, 1st ed.; Buschow, K.H.J., Cahn, R., Flemings, M., Ilschner, B., Kramer, E., Mahajan, S., Veyssiere, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2001; pp. 1039–1045.

Bemiller JN. Cellulose and Cellulose-Based Hydrocolloids: Carbohydrate Chemistry for Food Scientists.

Xiquan L, Tingzhu Q, Shaoqui Q. Kinetics of the carboxymethylation of cellulose in the isopropyl alcohol system. Acta Polymerica. 1990 Apr;41(4):220-2.

Jett. C, Arthur, J. Chemical Modification of Cellulose and its Derivatives. In Comprehensive Polymer Science and Supplements; Elsevier: Amsterdam, The Netherlands, 1989; Volume 6, pp. 49–80

Du B, Li J, Zhang H, Huang L, Chen P, Zhou J. Influence of molecular weight and degree of substitution of carboxymethylcellulose on the stability of acidified milk drinks. Food Hydrocolloids. 2009 Jul 1;23(5):1420-6.

Parikh DV, Fink T, Rajasekharan K, Sachinvala ND, Sawhney AP, Calamari TA, Parikh AD. Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Textile Research Journal. 2005 Feb;75(2):134-8.

Komorowska P, Różańska S, Różański J. Effect of the degree of substitution on the rheology of sodium carboxymethylcellulose solutions in propylene glycol/water mixtures. Cellulose. 2017 Oct;24(10):4151-62.

Lee BR, Oh ES. Effect of molecular weight and degree of substitution of a sodium-carboxymethyl cellulose binder on Li4Ti5O12 anodic performance. The Journal of Physical Chemistry C. 2013 Mar 7;117(9):4404-9.

Sorokin AV, Kuznetsov VA, Lavlinskaya MS. Synthesis of graft copolymers of carboxymethyl cellulose and N, N-dimethylaminoethyl methacrylate and their study as Paclitaxel carriers. Polymer Bulletin. 2021 Jun;78(6):2975-92.

Sathasivam T, Muniyandy S, Chuah LH, Janarthanan P. Encapsulation of red palm oil in carboxymethyl sago cellulose beads by emulsification and vibration technology: Physicochemical characterization and in vitro digestion. Journal of food engineering. 2018 Aug 1; 231:10-21.

Al Batran R, Al‐Bayaty F, Ameen Abdulla M, Jamil Al‐Obaidi MM, Hajrezaei M, Hassandarvish P, Fouad M, Golbabapour S, Talaee S. Gastroprotective effects of C orchorus olitorius leaf extract against ethanol‐induced gastric mucosal hemorrhagic lesions in rats. Journal of Gastroenterology and Hepatology. 2013 Aug;28(8):1321-9.

Babazadeh A, Tabibiazar M, Hamishehkar H, Shi B. Zein-CMC-PEG multiple nanocolloidal systems as a novel approach for nutra-pharmaceutical applications. Advanced pharmaceutical bulletin. 2019 Jun;9(2):262.

Jiang W, Yang L, Qiu L, Xu J, Yang X, Wang J, Zhou H, Wang D. Multifunctional hybrid nanoparticles based on sodium carboxymethylcellulose-graft-histidine and TPGS for enhanced effect of docetaxel. RSC Advances. 2015;5(66):53835-45.

Uglea CV, Pârv A, Corjan M, Dumitriu AD, Ottenbrite RM. Biodistribution and antitumor activity induced by carboxymethylcellulose conjugates. Journal of bioactive and compatible polymers. 2005 Nov;20(6):571-83.

Liu YX, Liu KF, Li CX, Wang LY, Liu J, He J, Lei J, Liu X. Self-assembled nanoparticles based on a carboxymethylcellulose–ursolic acid conjugate for anticancer combination therapy. RSC advances. 2017;7(58):36256-68.

Marschütz MK, Bernkop-Schnürch A. Oral peptide drug delivery: polymer–inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials. 2000 Jul 1;21(14):1499-507.

Sasaki H, Kashiwagi S, Mukai T, Nishida K, Nakamura J, Nakashima M, Ichikawa M. Topical Delivery System of Ophthalimic Drugs by Periocular Injection with Viscous Solution. Biological and Pharmaceutical Bulletin. 1999 Sep 15;22(9):961-5.

Park YH, Ha SK, Choi I, Kim KS, Park J, Choi N, Kim B, Sung JH. Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnology and bioprocess engineering. 2016 Jan;21(1):110-8.

Easson M, Villalpando A, Condon BD. Absorbent Properties of Carboxymethylated Fiber, Hydroentangled Nonwoven and Regenerated Cellulose: A Comparative Study. Journal of Engineered Fibers and Fabrics. 2017 Dec;12(4):155892501701200408.

Parikh DV, Fink T, Rajasekharan K, Sachinvala ND, Sawhney AP, Calamari TA, Parikh AD. Antimicrobial silver/sodium carboxymethyl cotton dressings for burn wounds. Textile Research Journal. 2005 Feb;75(2):134-8.

Varaprasad K, Jayaramudu T, Sadiku ER. Removal of dye by carboxymethyl cellulose, acrylamide and graphene oxide via a free radical polymerization process. Carbohydrate polymers. 2017 May 15;164:186-94.

Bozaci E, Akar E, Ozdogan E, Demir A, Altinisik A, Seki Y. Application of carboxymethylcellulose hydrogel based silver nanocomposites on cotton fabrics for antibacterial property. Carbohydrate Polymers. 2015 Dec 10;134:128-35.

Montaser AS, Jlassi K, Ramadan MA, Sleem AA, Attia MF. Alginate, gelatin, and carboxymethyl cellulose coated nonwoven fabrics containing antimicrobial AgNPs for skin wound healing in rats. International Journal of Biological Macromolecules. 2021 Mar 15;173:203-10.

Sheikh J, Bramhecha I, Teli MD. Recycling of terry towel (cellulosic) waste into carboxymethyl cellulose (CMC) for textile printing. Fibers and Polymers. 2015 May;16(5):1113-8.

Hebeish A, Higazy A, El-Shafei A, Sharaf S. Synthesis of carboxymethyl cellulose (CMC) and starch-based hybrids and their applications in flocculation and sizing. Carbohydrate Polymers. 2010 Jan 5;79(1):60-9.

Mohamed ZE, Amr A, Knittel D, Schollmeyer E. Synthesis and application of new sizing and finishing additives based on carboxymethyl cellulose. Carbohydrate polymers. 2010 Jul 23;81(4):769-74.

Obele CM, Ibenta ME, Chukwuneke JL, Nwanonenyi SC. Carboxymethyl cellulose and cellulose nanocrystals from cassava stem as thickeners in reactive printing of cotton. Cellulose. 2021 Mar;28(4):2615-33.

Jeong DS, Chun TI. Color Fastness of Digital Textile Printing on Silk Fabrics-The effect of the mixed pre-treatment agent. Fashion & Textile Research Journal. 2013;15(5):808-14.

Zhang LM. New water‐soluble cellulosic polymers: a review. Macromolecular Materials and Engineering. 2001 May 1;286(5):267-75.

McClements DJ. Emulsion stability. InFood emulsions 2015 Aug 21 (pp. 314-407). CRC Press.

Mirhosseini H, Tan CP, Aghlara A, Hamid NS, Yusof S, Chern BH. Influence of pectin and CMC on physical stability, turbidity loss rate, cloudiness and flavor release of orange beverage emulsion during storage. Carbohydrate Polymers. 2008 Jul 4;73(1):83-91.

Arancibia C, Navarro-Lisboa R, Zúñiga RN, Matiacevich S. Application of CMC as thickener on nanoemulsions based on olive oil: Physical properties and stability. International Journal of Polymer Science. 2016 Jan 1;2016.

Theeuwen C, Dijk B, inventors; Akzo Nobel NV, assignee. Use of carboxymethyl cellulose (cmc) in fruit-based products. United States patent application US 10/537,199. 2006 Feb 9.

Arancibia C, Bayarri S, Costell E. Comparing carboxymethyl cellulose and starch as thickeners in oil/water emulsions. Implications on rheological and structural properties. Food Biophysics. 2013 Jun;8(2):122-36.

Islam M, Alam MN, van de Ven T. Sustainable cellulose-based hydrogel for dewatering of orange juice. Cellulose. 2020 Sep;27(13):7637-48.

Bosso A, Salmaso D, De Faveri E, Guaita M, Franceschi D. The use of carboxymethylcellulose for the tartaric stabilization of white wines, in comparison with other oenological additives. Vitis. 2010 Jan 1;49(2):95-9.

Sebayang F, Sembiring H. Synthesis of CMC from palm midrib cellulose as stabilizer and thickening agent in food. Oriental Journal of Chemistry. 2017;33(1):519.

Gibis M, Schuh V, Weiss J. Effects of carboxymethyl cellulose (CMC) and microcrystalline cellulose (MCC) as fat replacers on the microstructure and sensory characteristics of fried beef patties. Food Hydrocolloids. 2015 Mar 1;45:236-46.

Han M, Bertram HC. Designing healthier comminuted meat products: Effect of dietary fibers on water distribution and texture of a fat-reduced meat model system. Meat Science. 2017 Nov 1; 133:159-65.