Review on herbal drugs nanonization for the treatment of breast cancer
Abstract
In the field of nanotechnology recent advances in phytomedicine are providing positive outcomes for the cancer treatment due to increasing knowledge of the molecular mechanisms underlying cancer progression. Naturally occurring chemical compounds from herbal plants are known as phytochemicals, serve as vital resources for novel drugs and are also sources for cancer therapy. With the application of nanotechnology of nanonization of herbal drugs, it will make the development of nanoherbal medicine possess high bioavaibility, extended half-life, increased immune evasion and targeted ability at the tumor site and good antitumor activity and eco-friendly which consequently will open the new era of herbal drug discovery. This review aims to highlight the potential of nanotechnology used with herbal plants, along with their pharmacologic action molecular or specific targets for the treatment of breast cancer.
This article is a part of Special Issue "Advances in the field of Nanomedicine"
References
Firdhouse, J., & Lalitha, P. (2015). Apoptotic efficacy of biogenic silver nanoparticles on human breast cancer MCF-7 cell lines. Progress in biomaterials, 4, 113.
Sharma, D., Mishra, S., Rajput, A., Raj, K., & Malviya, R. (2021). Pathophysiology and Biomarkers for Breast Cancer: Management Using Herbal Medicines. Current Nutrition & Food Science, 17(9), 974-984.
Km, S., Sharma, D., & Mishra, S. (2015). A PROSPECTIVE STUDY OF SERUM FOLATE CONCENTRATION AND HEMOGLOBIN IN CERVIX CARCINOMA PATIENTS. Education, 2017.
Ashkbar, A., Rezaei, F., Attari, F., &Ashkevarian, S. (2020). Treatment of breast cancer in vivo by dual photodynamic and photothermal approaches with the aid of curcumin photosensitizer and magnetic nanoparticles. Scientific reports, 10(1), 1-12.
Wani, K. D., Kadu, B. S., Mansara, P., Gupta, P., Deore, A. V., Chikate, R. C., ... & Kaul-Ghanekar, R. (2014). Synthesis, characterization and in vitro study of biocompatible cinnamaldehyde functionalized magnetite nanoparticles (CPGF Nps) for hyperthermia and drug delivery applications in breast cancer. PloS one, 9(9), e107315.
Uzoigwe J. Chukwuma1, Nzegwu M. Arinze2, Onyishi N. Thaddeus3, Ekwedigwe C. Kenneth4, Edegbe O. Felix1,Okani O. Chudi5, Ajah O. Leonard & Ekwedigwe I. Paul4 The Histological Subtypes of Breast Cancer Seen in a Tertiary Hospitalin South-East, Nigeria, Global Journal of health and Science;Vol. 12, No.6; 2020
Sartaj, A., Baboota, S., & Ali, J. (2021). Exploring the therapeutic potential of nanostructured lipid carrier approaches to tackling the inherent lacuna of chemotherapeutics and herbal drugs against breast cancer. Journal of Drug Delivery Science and Technology, 63, 102451.
Kumari, R., Yadav, V., Azure, S. A., Sharma, D., Mishra, S., Shalini, S., ... & Venaik, A. (2022). Homocysteine Metabolism and Risk of Breast Cancer in Women. In Homocysteine Metabolism in Health and Disease (pp. 173-192). Springer, Singapore.
Qi, F., Zhao, L., Zhou, A., Zhang, B., Li, A., Wang, Z., & Han, J. (2015). The advantages of using traditional Chinese medicine as an adjunctive therapy in the whole course of cancer treatment instead of only terminal stage of cancer. Bioscience trends, 9(1), 16-34.
MISHRA, S., BISHNOI, R. S., MAURYA, R., & JAIN, D. (2020). BOSWELLIA SERRATA ROXB. – A BIOACTIVE HERBS WITH VARIOUS PHARMACOLOGICAL ACTIVITIES. Asian Journal of Pharmaceutical and Clinical Research, 13(11), 33–39..
Scartezzini P, Speroni E. Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 2000; 71(1-2): 23-43. [http://dx.doi.org/10.1016/S0378-8741(00)00213-0] [PMID: 10904144]
Fattahi, S., Ardekani, A. M., Zabihi, E., Abedian, Z., Mostafazadeh, A., Pourbagher, R., &Akhavan-Niaki, H. (2013). Antioxidant and apoptotic effects of an aqueous extract of Urtica dioica on the MCF-7 human breast cancer cell line. Asian Pacific Journal of Cancer Prevention, 14(9), 5317-5323.
Shindikar, A., Singh, A., Nobre, M., &Kirolikar, S. (2016). Curcumin and resveratrol as promising natural remedies with nanomedicine approach for the effective treatment of triple negative breast cancer. Journal of oncology, 2016.
Hahm, E. R., Kim, S. H., Singh, K. B., Singh, K., & Singh, S. V. (2020). A comprehensive review and perspective on anticancer mechanisms of withaferin A in breast cancer. Cancer Prevention Research, 13(9), 721-734.
Vutakuri, N., &Somara, S. (2018). Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.) Maton. Int J Herbal Med, 6(2), 91-96.
Shareef, M., Ashraf, M. A., & Sarfraz, M. (2016). Natural cures for breast cancer treatment. Saudi Pharmaceutical Journal, 24(3), 233-240.
Mishra, J. N., & Verma, N. K. (2017). A brief study on Catharanthus roseus: A review. Intern J Res Pharmacy Pharmaceut Sci, 2(2), 20-23.
Chattopadhyay, S., Bisaria, V. S., Panda, A. K., & Srivastava, A. K. (2004). Cytotoxicity of in vitro produced podophyllotoxin from Podophyllum hexandrum on human cancer cell line. Natural Product Research, 18(1), 51-57.
Kumar, D. N., Shikha, S. W. A. T. I., George, V. C., Suresh, P. K., & Kumar, R. A. (2012). Anticancer and anti-metastatic activities of Rheum emodi rhizome chloroform extracts. Asian J Pharm Clin Res, 5(3), 189-194.
Karimian, R., Lahouti, M., &Davarpanah, S. J. (2014). Effects of Different Concentrations of 2, 4-D and Kinetin on Callogenesis of Taxus Brevifolia Nutt. Journal of Applied Biotechnology Reports, 1(4), 167-170.
Nirmala, M. J., Samundeeswari, A., & Sankar, P. D. (2011). Natural plant resources in anti-cancer therapy-A review. Res Plant Biol, 1(3), 01-14.
Alexis, F., Rhee, J. W., Richie, J. P., Radovic-Moreno, A. F., Langer, R., & Farokhzad, O. C. (2008, January). New frontiers in nanotechnology for cancer treatment. In Urologic Oncology: Seminars and Original Investigations (Vol. 26, No. 1, pp. 74-85). Elsevier.
Ferrari, M. (2005). Cancer nanotechnology: opportunities and challenges. Nature reviews cancer, 5(3), 161-171.
Bhadoriya, S. S., Mangal, A., Madoriya, N., & Dixit, P. (2011). Bioavailability and bioactivity enhancement of herbal drugs by “Nanotechnology”: a review. J Curr Pharm Res, 8, 1-7.
Wani, K., Tarawadi, K., & Kaul-Ghanekar, R. (2015). Nanocarriers for delivery of herbal based drugs in breast cancer-an overview. In Journal of Nano Research (Vol. 34, pp. 29-40). Trans Tech Publications Ltd.
Sabale, P., Modi, A., &Sabale, V. (2013). Curcuma longa Linn. A phytochemical and phytopharmacological review. Research Journal of Pharmacognosy and Phytochemistry, 5(2), 59.
Khoobchandani, M., Katti, K. K., Karikachery, A. R., Thipe, V. C., Srisrimal, D., Mohandoss, D. K. D., ... & Katti, K. V. (2020). New approaches in breast cancer therapy through green nanotechnology and nano-ayurvedic medicine–pre-clinical and pilot human clinical investigations. International Journal of Nanomedicine, 15, 181.
Al-Snafi, A. E., Ibraheemi, Z. A. M., & Talab, T. A. (2021). A review on components and pharmacology of Mangifera indica. International Journal of Pharmaceutical Research, 13(2), 3043-3066.
Freag, M. S., Elnaggar, Y. S., Abdelmonsif, D. A., & Abdallah, O. Y. (2016). Stealth, biocompatible monoolein-based lyotropic liquid crystalline nanoparticles for enhanced aloe-emodin delivery to breast cancer cells: in vitro and in vivo studies. International journal of nanomedicine, 11, 4799.
Vargas, J. C., & Bolívar, C. Aloe Barbadensis Miller.
Barani, M., Mirzaei, M., Torkzadeh-Mahani, M., &Adeli-Sardou, M. (2019). Evaluation of carum-loaded niosomes on breast cancer cells: Physicochemical properties, in vitro cytotoxicity, flow cytometric, DNA fragmentation and cell migration assay. Scientific reports, 9(1), 1-10.
Al-Snafi, A. E. (2015). The chemical constituents and pharmacological effects of Carum carvi-A review. Indian Journal of Pharmaceutical Science and Research, 5(2), 72-82.
Barani, M., Mirzaei, M., Torkzadeh-Mahani, M., &Nematollahi, M. H. (2018). Lawsone-loaded Niosome and its antitumor activity in MCF-7 breast Cancer cell line: a Nano-herbal treatment for Cancer. DARU Journal of Pharmaceutical Sciences, 26(1), 11-17.
Al-Snafi, A. E. (2019). A review on Lawsonia inermis: A potential medicinal plant. International Journal of Current Pharmaceutical Research, 11(5), 1-13.
Xiong, J., Jiang, B., Luo, Y., Zou, J., Gao, X., Xu, D., ... & Hao, L. (2020). Multifunctional nanoparticles encapsulating astragalus polysaccharide and gold nanorods in combination with focused ultrasound for the treatment of breast cancer. International journal of nanomedicine, 15, 4151.
Auyeung, K. K., Han, Q. B., & Ko, J. K. (2016). Astragalus membranaceus: a review of its protection against inflammation and gastrointestinal cancers. The American journal of Chinese medicine, 44(01), 1-22.
Zhou, R., Chen, H., Chen, J., Chen, X., Wen, Y., & Xu, L. (2018). Extract from Astragalus membranaceus inhibit breast cancer cells proliferation via PI3K/AKT/mTOR signaling pathway. BMC Complementary and Alternative Medicine, 18(1), 1-8.
Anitha, R., &Kanimozhi, S. (2012). Pharmacognostic Evaluation of Alternanthera Sessilis (L.) R. Br. ex. DC. Pharmacognosy Journal, 4(28), 31-34.
Fang, Y. P., Lin, Y. K., Su, Y. H., & Fang, J. Y. (2011). Tryptanthrin-loaded nanoparticles for delivery into cultured human breast cancer cells, MCF7: the effects of solid lipid/liquid lipid ratios in the inner core. Chemical and Pharmaceutical Bulletin, 59(2), 266-271.
Kukula-Koch, W., Koch, W., Stasiak, N., Głowniak, K., & Asakawa, Y. (2015). Quantitative standarization and CPC-based recovery of pharmacologically active components from Polygonum tinctorium Ait. leaf extracts. Industrial Crops and Products, 69, 324-328.
Mughees, M., Wajid, S., &Samim, M. (2020). Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. International Journal of Pharmaceutics, 586, 119583.
Basta, A., Tzakou, O., Couladis, M., & Pavlović, M. (2007). Chemical composition of Artemisia absinthium L. from Greece. Journal of Essential Oil Research, 19(4), 316-318.
Kavithaa, K., Paulpandi, M., Padma, P. R., & Sumathi, S. (2016). Induction of intrinsic apoptotic pathway and cell cycle arrest via baicalein loaded iron oxide nanoparticles as a competent nano-mediated system for triple negative breast cancer therapy. RSC advances, 6(69), 64531-64543.
Zhao, T., Tang, H., Xie, L., Zheng, Y., Ma, Z., Sun, Q., & Li, X. (2019). Scutellaria baicalensis Georgi.(Lamiaceae): a review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. Journal of Pharmacy and Pharmacology, 71(9), 1353-1369.
Heydari, R., &Rashidipour, M. (2015). Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF-7 cells. International journal of breast cancer, 2015.
Burlacu, E., Nisca, A., &Tanase, C. (2020). A comprehensive review of phytochemistry and biological activities of Quercus species. Forests, 11(9), 904.
Naik, G. G., Alam, M., Pandey, V., Mohapatra, D., Dubey, P. K., Parmar, A. S., &Sahu, A. N. (2020). Multi-Functional carbon dots from an ayurvedic medicinal plant for cancer cell Bioimaging Applications. Journal of Fluorescence, 30(2), 407-418.
Xie, Q., Liu, Y., Long, Y., Wang, Z., Jiang, S., Ahmed, R., ... & Wang, W. (2021). Hybrid-cell membrane-coated nanocomplex-loaded chikusetsusaponin IVa methyl ester for a combinational therapy against breast cancer assisted by Ce6. Biomaterials Science, 9(8), 2991-3004.
Qiao, Y. J., Shang, J. H., Wang, D., Zhu, H. T., Yang, C. R., & Zhang, Y. J. (2018). Research of Panax spp. in kunming institute of botany, CAS. Natural products and bioprospecting, 8(4), 245-263.
Khan, A. U., Yuan, Q., Khan, Z. U. H., Ahmad, A., Khan, F. U., Tahir, K., ... & Ullah, S. (2018). An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. Journal of Photochemistry and Photobiology B: Biology, 183, 367-373.
Jayasuriya, A. H. M., &Pemadasa, M. A. (1983). Factors affecting the distribution of tree species in a dry zone montane forest in Sri Lanka. The journal of Ecology, 571-583.
Balyan, P., Shinde, S., & Ali, A. (2021). Potential activities of nanoparticles synthesized from Nigella sativa L. and its phytoconstituents: An overview. Journal of Phytonanotechnology and Pharmaceutical Sciences, 1(2), 1-9.
Tabassam, Q., Mehmood, T., Raza, A. R., Ullah, A., Saeed, F., & Anjum, F. M. (2020). Synthesis, characterization and anti-cancer therapeutic potential of Withanolide-A with 20nm sAuNPs conjugates against SKBR3 breast cancer cell line. International journal of nanomedicine, 15, 6649.
Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of anti-inflammatory effect of ashwagandha: a preliminary study in vitro. Pharmacognosy Journal, 4(29), 47-49.
Baskar, G., Sakthivel, D., & George, G. B. Synthesis, characterization and anticancer activity of copper nanobiocomposite synthesized by leaf extract of Catharanthus roseus.
Natarajan, S. B., Chandran, S. P., &Vinukonda, A. (2019). Green tea catechin loaded nanodelivery systems for the treatment of pandemic diseases. Asian J Pharm Clin Res, 12(5), 1-7.
Kowsalya, E., MosaChristas, K., Jaquline, C. R. I., Balashanmugam, P., &Devasena, T. (2021). Gold nanoparticles induced apoptosis via oxidative stress and mitochondrial dysfunctions in MCF‐7 breast cancer cells. Applied Organometallic Chemistry, 35(1), e6071.
Mitra, S., Maiti, G. G., &Maity, D. (2015). Structure and distribution of heteromorphic stomata in Pterygota alata (Roxb.) R. Br.(Malvaceae, formerly Sterculiaceae). Adansonia, 37(1), 139-147.
Pathak, M. (2019). Cytotoxic action of silver nanoparticles synthesized from Phyllanthus fraternus on hepatic and breast cancer cell lines: A green approach. International Journal of Green Pharmacy (IJGP), 13(3).
Sathishkumar, P., Preethi, J., Vijayan, R., Yusoff, A. R. M., Ameen, F., Suresh, S., ... &Palvannan, T. (2016). Anti-acne, anti-dandruff and anti-breast cancer efficacy of green synthesised silver nanoparticles using Coriandrum sativum leaf extract. Journal of Photochemistry and Photobiology B: Biology, 163, 69-76.
Balan, L., Chandrasekaran, S., Gajendiran, M., &Nanjian, R. (2021). Synthesis of silver nanoparticles from Pedalium murex L. and its antiproliferative activity against breast cancer (MCF-7) cells. Journal of Molecular Structure, 1242, 130695.
Elhawary, S., Hala, E. H., Mokhtar, F. A., Mansour Sobeh, E. M., Osman, S., & El-Raey, M. (2020). Green synthesis of silver nanoparticles using extract of Jasminum officinal l. leaves and evaluation of cytotoxic activity towards bladder (5637) and breast cancer (MCF-7) cell lines. International Journal of Nanomedicine, 15, 9771.
Salazar, L., Vallejo López, M. J., Grijalva, M., Castillo, L., & Maldonado, A. (2018). Biological effect of organically coated Griasneuberthii and Persea americana silver nanoparticles on HeLa and MCF-7 cancer cell lines. Journal of Nanotechnology, 2018.
Sudha, A., Jeyakanthan, J., & Srinivasan, P. (2017). Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resource-Efficient Technologies, 3(4), 506-515.
Varun, S., & Sudha, S. (2015). Gold nanoparticles of Argemone mexicana induces oxidative stress and inhibits cell growth in MCF-7 cells. Int Journal Toxi Pharm Res, 7, 30.
Nagaraj, E., Karuppannan, K., Shanmugam, P., & Venugopal, S. (2019). Exploration of bio-synthesized copper oxide nanoparticles using pterolobiumhexapetalum leaf extract by photocatalytic activity and biological evaluations. Journal of Cluster Science, 30(4), 1157-1168.
Mohanty, M., & Jena, B. S. (2021). Ethanolic bark extract of Terminalia arjuna mediated biogenic silver nanoparticles and their antimicrobial and anticancer activities. International Journal of Nanotechnology, 18(5-8), 572-589.
Sumathi, R., &Sivagamasundari, K. Development of Functionalized silver Nanoparticles from Allamanda neriifolia Hook and their In Vitro Cytotoxic Effect on MCF-7 Cells.
Kokila, K., Elavarasan, N., & Sujatha, V. (2016). Green Synthesis and Biological Applications of Silver Nanoparticles Using Phyllanthus maderaspatensis L. Root Extract. Smart Science, 4(4), 180-189.
Elavarasan, N., Kokila, K., Inbasekar, G., & Sujatha, V. (2017). Evaluation of photocatalytic activity, antibacterial and cytotoxic effects of green synthesized ZnO nanoparticles by Sechium edule leaf extract. Research on Chemical Intermediates, 43(5), 3361-3376.
Lira-Saade, R. (1996). Promoting the conservation and use of underutilized and neglected crops. 8. Chayote, Sechium edule (Jacq.) Sw. International Plant Genetic Resources Institute, Rome, Italy.
Padalia, H., & Chanda, S. (2021). Antioxidant and anticancer activities of gold nanoparticles synthesized using aqueous leaf extract of Ziziphus nummularia. BioNanoScience, 11(2), 281-294.
Selim, Y. A., Azb, M. A., Ragab, I., & HM Abd El-Azim, M. (2020). Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Scientific reports, 10(1), 1-9.
El-Rafie, H. M., Abd El-Aziz, S. M., & Zahran, M. K. (2016). Bioactivities of gold and iron oxide nanoparticles biosynthesized from the edible plant Corchorus olitorius. Der Pharmacia Lettre, 8(19), 156-164.