Biotech meets Artificial Intelligence to Enhance the Value of By-Products in Animal Nutrition

Oussama Siad
https://orcid.org/0000-0002-9529-3867
Chaima Bouzid
https://orcid.org/0009-0007-8806-7195

Abstract

The utilization of by-products from various industries in animal nutrition has been a common practice for many years. However, these by-products often have low nutrient availability and may contain anti-nutritional factors, limiting their use as animal feed. Biotechnology has provided various approaches to enhance the value of these by-products by improving their nutrient availability and safety for animal consumption. In this review, we discuss the biotechnological approaches used to enhance the value of by-products in animal nutrition, including the use of enzymes, fermentation, single-cell protein, and genetically modified crops. These biotechnological approaches can improve the digestibility and nutrient availability of by-products, increase the efficiency of animal production, and reduce waste. However, the safety of these biotechnological processes must be thoroughly evaluated to ensure that they do not have any negative impacts on animal or human health or the environment. This review highlights the potential of biotechnology to improve the utilization of by-products in animal nutrition and its future applications in the animal feed industry.


CITATION
DOI: 10.55006/biolsciences.2023.03012
Published: 15-03-2023

How to Cite
Siad, O., & Bouzid, C. (2023). Biotech meets Artificial Intelligence to Enhance the Value of By-Products in Animal Nutrition. Biological Sciences, 3(1), 353–365. https://doi.org/10.55006/biolsciences.2023.03012
Author Biography

Chaima Bouzid, Department of agricultural science, DEDSPAZA laboratory, University of Biskra, Algeria

PhD student in animal production, Department of agricultural science, DEDSPAZA laboratory. University of Biskra, Algeria.

References

Altieri, M. A. (2004). Genetic engineering in agriculture: the myths, environmental risks, and alternatives (No. 1). Food First Books.

Aro, S. O. (2008). Improvement in the nutritive quality of cassava and its by-products through microbial fermentation. African Journal of Biotechnology, 7(25).

Asmare, B. (2014). Biotechnological advances for animal nutrition and feed improvement. World Journal of Agricultural Research, 2(3), 115-118.

Bao, J., & Xie, Q. (2022). Artificial intelligence in animal farming: A systematic literature review. Journal of Cleaner Production, 331, 129956.

Bangar, S. P., Sharma, N., Kumar, M., Ozogul, F., Purewal, S. S., & Trif, M. (2021). Recent developments in applications of lactic acid bacteria against mycotoxin production and fungal contamination. Food Bioscience, 44, 101444.

Barta, D. G., Coman, V., & Vodnar, D. C. (2021). Microalgae as sources of omega-3 polyunsaturated fatty acids: Biotechnological aspects. Algal Research, 58, 102410.

Bishop, C. M. (1994). Neural networks and their applications. Review of scientific instruments, 65(6), 1803-1832.).

Bratosin, B. C., Darjan, S., & Vodnar, D. C. (2021). Single cell protein: A potential substitute in human and animal nutrition. Sustainability, 13(16), 9284.

Bych, K., Mikš, M. H., Johanson, T., Hederos, M. J., Vigsnæs, L. K., & Becker, P. (2019). Production of HMOs using microbial hosts—from cell engineering to large scale production. Current opinion in biotechnology, 56, 130-137.

Camilla Mariane Menezes Souza,. Research, Society and Development, v. 10, n. 16, e53101622986, 2021 (CC BY 4.0) | ISSN 2525-3409 | DOI:).

Chen, M., Shelton, A., & Ye, G. Y. (2011). Insect-resistant genetically modified rice in China: from research to commercialization. Annual review of entomology, 56, 81-101.

Choct M (2006). Enzymes for the feed industry: Past, present and future. World Poultry Science.

Daar A.S., Thorsteinsdottir H., Martin D.K., Smith A.C., Nast S. & Singer P.A (2002) Top ten biotechnologies for improving health in developing countries.

Dawood, M. A., & Koshio, S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Reviews in Aquaculture, 12(2), 987-1002.

De Koning, C. J. A. M. (2010). Automatic Milking – Common Practice on Dairy Farms. Proceedings of The First North American Conference on Precision Dairy Management. Retrieved 4, 2023, from http://www.precisiondairy.com/conferenceproceedings.html

Djoulde Darman, R., Essia Ngand, J. J., and Etoa, F. X. (2011). Cassava solid state fermentation with a starter culture of Lactobacillus plant arum and Rhyzopus oryzae for cellulase production. Afr. J. Microbiol. Res. 5, 4866–4872. doi: 10.5897/AJMR11.790.

Domingo, J. L., & Bordonaba, J. G. (2011). A literature review on the safety assessment of genetically modified plants. Environment International, 37(4), 734-742.

Ee, K. Y., and Yates, P. (2013). Nutritional and antinutritional evaluation of raw and processed Australian wattle (Acacia saligna) seeds. Food Chem. 138, 762–769. doi: 10.1016/j.foodchem.2012.10.085.

Elhai, J.D.; Tiamiyu, M.F.; Weeks, J.W.; Levine, J.C.; Picard, K.J.; Hall, B. Depression and emotion regulation predict objective smartphone use measured over one week. Pers. Individ. Differ. 2018, 133, 21–28.

Etoa, F., Djoulde, R. D., and Ngang, J. E. (2005). Growth and α -amylase production by strains of Lactobacillus plantarum and Rhizopus oryzae cultures in cassava starch medium. Cameroon J. Exp. Biol. 1, 1–10.

Evans, D. E., Coleman, J. O., & Kearns, A. (2020). Plant cell culture. Taylor & Francis.

Getabalew, M., & Alemneh, T. (2019). The application of biotechnology on livestock feed improvement. Arch. Biomed. Eng. Biotechnol, 1(5).

Girotto, F., Alibardi, L., and Cossu, R. (2015). Food waste generation and industrial uses: a review. Waste Manage. 45, 32–41. doi: 10.1016/j.wasman.2015.06.008.

Ghosh-Dastidar, S., & Adeli, H. (2009). Spiking neural networks. International journal of neural systems, 19(04), 295-308.

Gupta, B., Balakrishna, S. L., Singh, K. R., Sridevi, P., & Singh, R. P. (2022). Biotechnology in animal nutrition and feed utilization. In Emerging Issues in Climate Smart Livestock Production (pp. 339-369). Academic Press.

Gupta S, Savalia CV (2012). Application of biotechnology to improve livestock products. Veterinary World 5(10):634-638.

Halmemies-Beauchet-Filleau, A., Rinne, M., Lamminen, M., Mapato, C., Ampapon, T., Wanapat, M., & Vanhatalo, A. (2018). Alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal, 12(s2), s295-s309.

Hasan, M. N., Sultan, M. Z., & Mar-E-Um, M. (2014). Significance of fermented food in nutrition and food science. Journal of Scientific Research, 6(2), 373-386.

Hashemian, M., Ahmadzadeh, H., Hosseini, M., Lyon, S., & Pourianfar, H. R. (2019). Production of microalgae-derived high-protein biomass to enhance food for animal feedstock and human consumption. In Advanced bioprocessing for alternative fuels, biobased chemicals, and bioproducts (pp. 393-405). Woodhead Publishing.

Henseler, M., Piot-Lepetit, I., Ferrari, E., Mellado, A. G., Banse, M., Grethe, H., ... & Hélaine, S. (2013). On the asynchronous approvals of GM crops: Potential market impacts of a trade disruption of EU soy imports. Food Policy, 41, 166-176.

Houmard, N. M., Mainville, J. L., Bonin, C. P., Huang, S., Luethy, M. H., & Malvar, T. M. (2007). High‐lysine corn generated by endosperm‐specific suppression of lysine catabolism using RNAi. Plant Biotechnology Journal, 5(5), 605-614.

Igbabul, B. D., Amove, J., & Twadue, I. (2014). Effect of fermentation on the proximate composition, antinutritional factors and functional properties of cocoyam (Colocasia esculenta) flour. African Journal of Food Science and Technology, 5(3), 67-74.

Jhon Ruane, Maria Zimmermann, (2001). Report of the first six e-mail conferences of the FAO Electronic Forum on Biotechnology in Food and Agriculture.)

Khattab, R. Y., and Arntfield, S. D. (2009). Nutritional quality of legume seeds as affected by some physical treatments 2. Antinutritional factors. LWT Food Sci. Technol. 42, 1113–1118. doi: 10.1016/j.lwt.2009.02.004

Kollias, D.; Tzirakis, P.; Nicolaou, M.A.; Papaioannou, A.; Zhao, G.; Schuller, B.; Kotsia, I.; Zafeiriou, S. Deep Affect Prediction in-the-Wild: Aff-Wild Database and Challenge, Deep Architectures, and Beyond. Int. J. Comput. Vis.2019, 127, 907–929.

Kramer, O., & Kramer, O. (2017). Genetic algorithms (pp. 11-19). Springer International Publishing.

Krishnan, H. B., & Jez, J. M. (2018). The promise and limits for enhancing sulfur-containing amino acid content of soybean seed. Plant Science, 272, 14-21.

Lakshmi, G. S., Rao, C. S., Rao, R. S., Hobbs, P. J., & Prakasham, R. S. (2009). Enhanced production of xylanase by a newly isolated Aspergillus terreus under solid state fermentation using palm industrial waste: A statistical optimization. Biochemical Engineering Journal, 48(1), 51-57.

Leng R.A., (1991). Application of biotechnology to nutrition of animals in developing countries. FAO, Animal Production and Health Paper 90.

Lu, Y., Wang, Y., Xu, G., Chu, J., Zhuang, Y., & Zhang, S. (2010). Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Applied biochemistry and biotechnology, 160, 360-369

Madan ML (2005). Animal biotechnology: applications and economic implications in developing countries. Revue Scientifique Et Technique-Office International Des Epizooties 24(1):127-129.

Mc Donald P, Edwards RA, Greenhalgh JFD, Morgan CA, Sinclair LA et al. (2010) Animal Nutrition. Pearson Books.

Md, F. (2012). Biosurfactant: production and application. J Pet Environ Biotechnol, 3(4), 124.

Nasseri, A. T., Rasoul-Amini, S., Morowvat, M. H., & Ghasemi, Y. (2011). Single cell protein: production and process. American Journal of food technology, 6(2), 103-116.

Nidhina, N., and Muthukumar, S. P. (2015). Anti nutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing. Food Chem. 173, 920–926. doi: 10.1016/j.foodchem.2014.10.071.

Nigatu, Y. (2018). Current status of animal biotechnology and option for improvement of animal reproduction in Asia. International Journal of Livestock Production, 9(10), 260-268.

Njokweni, S. G., Steyn, A., Botes, M., Viljoen-Bloom, M., & van Zyl, W. H. (2021). Potential valorization of organic waste streams to valuable organic acids through microbial conversion: A South African case study. Catalysts, 11(8), 964.

Nout, M. J. R., & Motarjemi, Y. (1997). Assessment of fermentation as a household technology for improving food safety: a joint FAO/WHO workshop. Food Control, 8(5-6), 221-226.

Nunes, L. J. R., Matias, J. C. O., & Catalão, J. P. S. (2014). A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renewable and Sustainable Energy Reviews, 40, 153-160.

Oliveira, D. A. B., Pereira, L. G. R., Bresolin, T., Ferreira, R. E. P., & Dorea, J. R. R. (2021). A review of deep learning algorithms for computer vision systems in livestock. Livestock Science, 253, 104700.

Pariza MW, Cook M (2010). Determining the safety of enzymes used in animal feed. RegulToxicol Pharm 56: 332- 342.

Pettersson, D., & Pontoppidan, K. (2013). Soybean meal and the potential for upgrading its feeding value by enzyme supplementation. Soybean-bio-active compounds, 288-307.

Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical reviews in microbiology, 34(2), 77-88

Rathod, R. P., and Annapure, U. S. (2016). Effect of extrusion process on anti-nutritional factors and protein and starch digestibility of lentil splits. LWT Food Sci. Technol. 66, 114–123. doi: 10.1016/j.lwt.2015.10.028.

Rode, L.M., McAllister, T.A., Beauchemin, K.A., Morgavi, D.P., Nsereko, V.L., Yang, W.Z., Iwaasa, A.D. & Wang, Y (2001). Enzymes as direct feed additives for ruminants. In R. Renaville& A. Burny, eds. Biotechnology in animal husbandry, Vol. 5, pp. 301-332.

Rodriguez-Martinez, H., Hultgren, J., Båge, R., Bergqvist, A. S., Svenssson, C., Bergsten, C., ... & Gustafsson, H. (2008). Reproductive performance in high-producing dairy cows

Rommens, C. M. (2004). All-native DNA transformation: a new approach to plant genetic engineering. Trends in plant science, 9(9), 457-464.

Sharif, M., Zafar, M. H., Aqib, A. I., Saeed, M., Farag, M. R., & Alagawany, M. (2021). Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition. Aquaculture, 531, 735885.

Schwan, R. F., & Wheals, A. E. (2004). The microbiology of cocoa fermentation and its role in chocolate quality. Critical reviews in food science and nutrition, 44(4), 205-221.

Selle PH and Ravindran V (2007). Microbial phytase in poultry nutrition.

Sharma, J., Sarmah, P., & Bishnoi, N. R. (2020). Market perspective of EPA and DHA production from microalgae. Nutraceutical Fatty Acids from Oleaginous Microalgae: A Human Health Perspective, 281-297.

Shelke, S.K., S.S, Thakur and A.A. Amrutkar (2011). Effect of pre partum supplementation of rumen protected fat and protein on the performance of Murrah buffaloes.

Stygar, A. H., Gómez, Y., Berteselli, G. V., Dalla Costa, E., Canali, E., Niemi, J. K., ... & Pastell, M. (2021). A systematic review on commercially available and validated sensor technologies for welfare assessment of dairy cattle. Frontiers in veterinary science, 8, 634338.

Suhag, R., Dhiman, A., Deswal, G., Thakur, D., Sharanagat, V. S., Kumar, K., & Kumar, V. (2021). Microwave processing: A way to reduce the anti-nutritional factors (ANFs) in food grains. LWT, 150, 111960.

Suman, G., Nupur, M., Anuradha, S., & Pradeep, B. (2015). Single cell protein production: a review. Int. J. Curr. Microbiol. App. Sci, 4(9), 251-262.

Tacon A G J 2020 Rev. Fish. Sci. Aquac. 28 (1) 43 ̶ 56.

Tanasković, S. J., Šekuljica, N., Jovanović, J., Gazikalović, I., Grbavčić, S., Đorđević, N., ... & Knežević-Jugović, Z. (2021). Upgrading of valuable food component contents and anti-nutritional factors depletion by solid-state fermentation: A way to valorize wheat bran for nutrition. Journal of Cereal Science, 99, 103159.

Tema, 2015. Review on Status of Animal Biotechnology and Options for Improving Animal Production in Developing Countries Article January 2015, AndualemTonamo Tema.

Thakore, Y.B. (2008): Enzymes for industrial applications

Torres-León C, Ramírez-Guzman N, Londoño-Hernandez L, Martinez-Medina GA, Díaz-Herrera R, Navarro-Macias V, Alvarez-Pérez OB, Picazo B, Villarreal-Vázquez M, Ascacio-Valdes J and Aguilar CN (2018) Food Waste and Byproducts: An Opportunity to Minimize Malnutrition and Hunger in Developing Countries. Front. Sustain. Food Syst. 2:52. doi: 10.3389/fsufs.2018.00052.

Tresina, P. S., Paulpriya, K., Mohan, V. R., and Jeeva, S. (2017). Effect of gamma irradiation on the nutritional and antinutritional qualities of Vigna aconitifolia (Jacq.) Marechal: an underutilized food legume. Biocatal. Agric. Biotechnol. 10, 30–37. doi: 10.1016/j.bcab.2017.02.002

Silwattananusarn, T., & Tuamsuk, K. (2012). Data mining and its applications for knowledge management: a literature review from 2007 to 2012. arXiv preprint arXiv:1210.2872.

Singh, K., Kumar, T., Prince, V. K., Sharma, S., & Rani, J. (2019). A review on conversion of food wastes and by-products into value added products. International Journal of Chemical Studies, 7(2), 2068-2073.

Souza, C. M. M., Bastos, T. S., & dos Santos, M. C. (2021). Microalgae use in animal nutrition. Research, Society and Development, 10(16), e53101622986-e53101622986.

Waters, S., Ramos, A., Culler, A. H., Hunst, P., Zeph, L., Gast, R., & Goodwin, L. (2021). Recommendations for science-based safety assessment of genetically modified (GM) plants for food and feed uses. Journal of Regulatory Science, 9(1), 16-21.

Yadav, C.M. and J.L. Chaudhary (2010). Effect of feeding protected protein on the growth performance and physiological reactionin crossbred heifers.

Zeng, Y., Zhang, Z., & Kusiak, A. (2015). Predictive modeling and optimization of a multi-zone HVAC system with data mining and firefly algorithms. Energy, 86, 393-402.

Zhang, Q.; Chen, X.; Zhan, Q.; Yang, T.; Xia, S. Respiration-based emotion recognition with deep learning. Comput. Ind.2017, 92–93, 84–90.

Zhang, W.; Liu, H.; Silenzio, V.M.B.; Qiu, P.; Gong, W. Machine Learning Models for the Prediction of Postpartum Depression:Application and Comparison Based on a Cohort Study. JMIR Med. Inform. 2020, 8, e15516.

Zhang, Y., Ding, C., & Li, T. (2008). Gene selection algorithm by combining reliefF and mRMR. BMC genomics, 9, 1-10.