Closing the Gap: Artificial Intelligence Integration for Advancing Chikungunya Virus Studies in Africa

Mustapha Abdulsalam
https://orcid.org/0000-0001-7969-0822
Mujtaba Amina Ila

Abstract

This study addresses critical research gaps in Chikungunya virus (CHIKV) studies in Africa, proposing an AI-integrated approach. The study aims to leverage AI to enhance epidemiological surveillance, vector control, clinical management, community engagement, drug discovery, and data integration, within a One Health framework. The research gaps encompass inadequate real-time surveillance, limited vector knowledge, diagnostic challenges, low community awareness, slow drug development, and fragmented data. The study underscores AI's potential in early outbreak detection through data analysis and predictive modeling. It highlights AI's role in enhancing vector surveillance via image recognition and machine learning. AI-assisted diagnostics aid in accurate case identification. Moreover, AI-driven communication strategies can elevate community engagement. AI expedites drug discovery and vaccine development by predicting potential compounds. Data integration facilitated by AI harmonizes diverse datasets, encouraging interdisciplinary collaboration. The study advocates a One Health approach, recognizing the interdependence of human, animal, and environmental health. The study's insights provide a comprehensive roadmap to address CHIKV research gaps through AI, ultimately advancing public health outcomes in Africa.


CITATION
DOI: 10.55006/biolsciences.2023.3404
Published: 21-11-2023

How to Cite
Abdulsalam, M., & Amina Ila, M. (2023). Closing the Gap: Artificial Intelligence Integration for Advancing Chikungunya Virus Studies in Africa. Biological Sciences, 3(4), 493–502. https://doi.org/10.55006/biolsciences.2023.3404

References

Schwartz, O., & Albert, M. L. (2010). Biology and pathogenesis of chikungunya virus. Nature Reviews Microbiology, 8(7), 491-500.

Mohan, A. (2006). Chikungunya fever: clinical manifestations & management. Indian Journal of Medical Research, 124(5), 471-474.

Moulay, D., Aziz-Alaoui, M. A., & Kwon, H. D. (2012). Optimal control of chikungunya disease: larvae reduction, treatment and prevention. Mathematical Biosciences and Engineering, 9(2), 369-392.

Manzoor, K. N., Javed, F., Ejaz, M., Ali, M., Mujaddadi, N., Khan, A. A., & Manzoor, S. (2022). The global emergence of Chikungunya infection: An integrated view. Reviews in medical virology, 32(3), e2287.

Fritsch, H., Giovanetti, M., Xavier, J., Adelino, T. E. R., Fonseca, V., de Jesus, J. G., & Iani, F. C. D. M. (2022). Retrospective Genomic Surveillance of Chikungunya Transmission in Minas Gerais State, Southeast Brazil. Microbiology Spectrum, 10(5), e01285-22.

6. Jungfleisch, J., Böttcher, R., Talló-Parra, M., Pérez-Vilaró, G., Merits, A., Novoa, E. M., & Díez, J. (2022). CHIKV infection reprograms codon optimality to favor viral RNA translation by altering the tRNA epitranscriptome. Nature Communications, 13(1), 4725.

7. Ghildiyal, R., & Gabrani, R. (2020). Antiviral therapeutics for chikungunya virus. Expert opinion on therapeutic patents, 30(6), 467-480.

8. Vega-Rúa, A., Zouache, K., Girod, R., Failloux, A. B., & Lourenço-de-Oliveira, R. (2014). High level of vector competence of Aedes aegypti and Aedes albopictus from ten American countries as a crucial factor in the spread of Chikungunya virus. Journal of virology, 88(11), 6294-6306.

Richman, R., Diallo, D., Diallo, M., Sall, A. A., Faye, O., Diagne, C. T., & Buenemann, M. (2018). Ecological niche modeling of Aedes mosquito vectors of chikungunya virus in southeastern Senegal. Parasites & vectors, 11, 1-17.

Arif, M., Tauran, P., Kosasih, H., Pelupessy, N. M., Sennang, N., Mubin, R. H., & Karyana, M. (2020). Chikungunya in Indonesia: Epidemiology and diagnostic challenges. PLoS Neglected Tropical Diseases, 14(6), e0008355.

Davies, S. E. (2019). Containing contagion: The politics of disease outbreaks in Southeast Asia. Johns Hopkins University Press.

Mehta, R., Soares, C. N., Medialdea-Carrera, R., Ellul, M., da Silva, M. T. T., Rosala-Hallas, A., & Solomon, T. (2018). The spectrum of neurological disease associated with Zika and chikungunya viruses in adults in Rio de Janeiro, Brazil: A case series. PLoS Neglected Tropical Diseases, 12(2), e0006212.

Kohnert, D. (2021). On the socio-economic impact of pandemics in Africa- Lessons learned from COVID-19, Trypanosomiasis, HIV, Yellow Fever, and Cholera. Trypanosomiasis, HIV, Yellow Fever, and Cholera (May 6, 2021).

Tozan, Y., Sjödin, H., Muñoz, Á. G., & Rocklöv, J. (2020). Transmission dynamics of dengue and chikungunya in a changing climate: Do we understand the eco-evolutionary response? Expert Review of Anti-infective Therapy, 18(12), 1187-1193.

Wong, F., de la Fuente-Nunez, C., & Collins, J. J. (2023). Leveraging artificial intelligence in the fight against infectious diseases. Science, 381(6654), 164-170.

Russo, G., Subissi, L., & Rezza, G. (2020). Chikungunya fever in Africa: a systematic review. Pathogens and Global Health, 114(3), 111-119.

Bettis, A. A., L’Azou Jackson, M., Yoon, I. K., Breugelmans, J. G., Goios, A., Gubler, D. J., & Powers, A. M. (2022). The global epidemiology of chikungunya from 1999 to 2020: A systematic literature review to inform the development and introduction of vaccines. PLoS Neglected Tropical Diseases, 16(1), e0010069.

Espinal, M. A., Andrus, J. K., Jauregui, B., Waterman, S. H., Morens, D. M., Santos, J. I., & Olson, D. (2019). Emerging and reemerging Aedes-transmitted arbovirus infections in the region of the Americas: implications for health policy. American journal of public health, 109(3), 387-392.

Vairo, F., Aimè Coussoud-Mavoungou, M. P., Ntoumi, F., Castilletti, C., Kitembo, L., Haider, N., ... & Pandora-ID-NET Consortium Chikungunya Outbreak Group Taskforce. (2020). Chikungunya outbreak in the Republic of the Congo, 2019—Epidemiological, virological and entomological findings of a South-North Multidisciplinary Taskforce Investigation. Viruses, 12(9), 1020.

da Silva, S. J. R., de Magalhães, J. J. F., & Pena, L. (2021). Simultaneous circulation of DENV, CHIKV, ZIKV, and SARS-CoV-2 in Brazil: an inconvenient truth. One Health, 12, 100205.

Escobar, L. E., Qiao, H., & Peterson, A. T. (2016). Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasites & Vectors, 9(1), 1-12.

Abboubakar, H., Guidzavai, A. K., Yangla, J., Damakoa, I., & Mouangue, R. (2021). Mathematical modeling and projections of a vector-borne disease with optimal control strategies: A case study of the Chikungunya in Chad. Chaos, Solitons & Fractals, 150, 111197.

Witt, C. J., Richards, A. L., Masuoka, P. M., Foley, D. H., Buczak, A. L., Musila, L. A., & AFHSC-GEIS Predictive Surveillance Writing Group. (2011). The AFHSC-Division of GEIS Operations Predictive Surveillance Program: a multidisciplinary approach for the early detection and response to disease outbreaks. BMC Public Health, 11, 1-16.

Pley, C., Evans, M., Lowe, R., Montgomery, H., & Yacoub, S. (2021). Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. The Lancet Planetary Health, 5(10), e739-e745.

Kaur, I., Sandhu, A. K., & Kumar, Y. (2022). Artificial intelligence techniques for predictive modeling of vector-borne diseases and its pathogens: a systematic review. Archives of Computational Methods in Engineering, 29(6), 3741-3771.

Carney, R. M., Mapes, C., Low, R. D., Long, A., Bowser, A., Durieux, D., ... & Palmer, J. R. (2022). Integrating global citizen science platforms to enable next-generation surveillance of invasive and vector mosquitoes. Insects, 13(8), 675.

Santosh, K. C., & Gaur, L. (2022). Artificial intelligence and machine learning in public healthcare: Opportunities and societal impact. Springer Nature.

Saheed, Y. K., Balogun, B. F., Odunayo, B. J., & Abdulsalam, M. (2023). Microarray Gene Expression Data Classification Via Wilcoxon Sign Rank Sum and Novel Grey Wolf Optimized Ensemble Learning Models. IEEE/ACM Transactions on Computational Biology and Bioinformatics.

Pérez-Pérez, M. J., Delang, L., Ng, L. F., & Priego, E. M. (2019). Chikungunya virus drug discovery: still a long way to go? Expert opinion on drug discovery, 14(9), 855-866.

Chaudhary, M., & Sehgal, D. (2022). In silico identification of natural antiviral compounds as a potential inhibitor of chikungunya virus non-structural protein 3 macrodomain. Journal of Biomolecular Structure and Dynamics, 40(22), 11560-11570.

Sharma, P., Sharma, G., Singh, M., Sharma, K., Kour, N., & Chadha, P. (2022). Applications of Artificial Intelligence in Modern Health Care and Its Future Scope. In Society 5.0 and the Future of Emerging Computational Technologies (pp. 97-122). CRC Press.

Rocklöv, J., Tozan, Y., Ramadona, A., Sewe, M. O., Sudre, B., Garrido, J., ... & Semenza, J. C. (2019). Using big data to monitor the introduction and spread of Chikungunya, Europe, 2017. Emerging infectious diseases, 25(6), 1041.

Braack, L., Wulandhari, S. A., Chanda, E., Fouque, F., Merle, C. S., Nwangwu, U., ... & Clarke, S. E. (2023). Developing African arbovirus networks and capacity strengthening in arbovirus surveillance and response: findings from a virtual workshop.

Cauchemez, S., Ledrans, M., Poletto, C., Quénel, P., De Valk, H., Colizza, V., & Boëlle, P. Y. (2014). Local and regional spread of chikungunya fever in the Americas. Eurosurveillance, 19(28), 20854.

Jiao, Z., Ji, H., Yan, J., & Qi, X. (2023). Application of big data and artificial intelligence in epidemic surveillance and containment. Intelligent Medicine, 3(1), 36-43.

Wesula Olivia, L., Obanda, V., Bucht, G., Mosomtai, G., Otieno, V., Ahlm, C., & Evander, M. (2015). Global emergence of Alphaviruses that cause arthritis in humans. Infection ecology & epidemiology, 5(1), 29853.

Socha, W., Kwasnik, M., Larska, M., Rola, J., & Rozek, W. (2022). Vector-borne viral diseases as a current threat for human and animal health—One Health perspective. Journal of Clinical Medicine, 11(11), 3026.

Ellwanger, J. H., Veiga, A. B. G. D., Kaminski, V. D. L., Valverde-Villegas, J. M., Freitas, A. W. Q. D., & Chies, J. A. B. (2021). Control and prevention of infectious diseases from a One Health perspective. Genetics and Molecular Biology, 44.

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.